ENVIRONMENTAL PRODUCT DECLARATION

as per ISO 14025 and EN 15804

Owner of the Declaration	Desso BV
Programme holder	Institut Bauen und Umwelt e.V. (IBU)
Publisher	Institut Bauen und Umwelt e.V. (IBU)
Declaration number	EPD-DES-20160158-CAB1-DE
Issue date	30.09.2016
Valid to	29.09.2021

Tufted carpet tiles Pile material 800-900 g/m² polyamide 6 with 0% recycled content and EcoBase[™] backing

www.ibu-epd.com / https://epd-online.com

General Information

Desso BV, a Tarkett company www.desso.com

Programme holder

IBU - Institut Bauen und Umwelt e.V. Panoramastr. 1 10178 Berlin Germany

Declaration number EPD-DES-20160158-CAB1-DE

This Declaration is based on the Product Category Rules:

Floor coverings, 07.2014 (PCR tested and approved by the SVR)

Issue date 30.09.2016

Valid to 29.09.2021

Wermanes

Prof. Dr.-Ing. Horst J. Bossenmayer (President of Institut Bauen und Umwelt e.V.)

Mann

Dr. Burkhart Lehmann (Managing Director IBU)

Product

Product description

Product description

Tufted carpet tiles with a surface pile of 0% recycled solution-dyed polyamide 6 and a DESSO EcoBase[®] backing. The declaration applies for a group of products with a total pile-material of 800-900 g/m². The calculations refer to the average pile-material input of 850 g/m².

DESSO EcoBase® Backing

DESSO EcoBase[®] is a polyolefin based backing which contains 100% positively defined* recycled calcium carbonate (chalk) as well as a polypropylene covering fleece and glass scrim reinforcement. The EcoBaseTM backing is 100% recyclable in Desso's own production process. Products declared in this EPD have a minimum of 40% positively defined* recycled content.

Application

According to the use class as defined in /EN 1307/ the products can be used in all professional area which require **class 33** or less.

Tufted carpet tiles Pile material 800-900 g/m² PA 6 with 0% recycled content and EcoBase[™] backing.

Owner of the Declaration

Desso BV Taxandriaweg 15 5142 PA Waalwijk The Netherlands

Declared product / Declared unit

1 m² Tufted carpet tiles Pile material 800-900 g/m² PA 6 with 0% recycled content and EcoBase™ backing.

Scope:

The declaration applies for a group of tufted modular carpet tiles. It is only valid in conjunction with a valid PRODIS licence. The products are produced in the

manufacturing sites Dendermonde, Belgium (tufting) and in Waalwijk, the Netherlands (precoating and heavy coating). The owner of the declaration shall be liable for the underlying information and evidence; the IBU shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Verification

The CEN Norm /EN 15804/ serves as the core PCR Independent verification of the declaration

according to /ISO 14025/

internally х externally

7 alo

Dr. Eva Schmincke (Independent verifier appointed by SVR)

Technical Data

Name	Value	Unit
Product form	Tiles	-
Type of manufacture	Tufted	-
	0%	
Yarn type	recycled	-
	PA6	
Total carpet weight	4400	g/m²
Surface pile weight	800 - 900	g/m²
Secondary backing	EcoBase™ backing	-

Additional product properties according to /EN 1307/ can be found on the "Product Information System" (PRODIS) using the PRODIS registration number of the product. www.pro-dis.info or on the Desso website: www.desso.com

Base materials / Ancillary materials

Name	Value	Unit
Polyamide 6	19.1	%
Polyester	2.3	%
Polypropylene	1.0	%
Calcium Carbonate (chalk)	51.6	%
Polyolefin	17.1	%
Aluminium tri hydrate	3.9	%
Latex	3.9	%
Glass fibre	0.6	%
additives	0.6	%

Reference service life

The service life of textile floorcoverings strongly depends on the correct installation taking into account the declared use classification and the adherence of cleaning and maintenance instructions. A minimum service life of 10 years could be assumed, technical service life can be considerably longer.

*Positively defined = all ingredients have been assessed as either Green (optimal) or Yellow (tolerable) according to the Cradle to Cradle® assessment criteria. As described in Cradle to Cradle® CertifiedCM Product Standard Version 3.1.

LCA: Calculation rules

Declared Unit

Declared unit

Name	Value	Unit
Declared unit	1	m²
Conversion factor to 1 kg	0.237	-
Mass reference (average product)	4.4	kg/m²

Database: Ecolnvent

System boundary

Type of the EPD: Cradle-to-grave.

System boundaries of the modules A, B, C, D:

A1-A3 Production:

Energy provision, production of raw material that is not secondary material (e.g. additives, dyes), yarn processing (e.g. solution dying):

Auxiliary material, transport of any material to the manufacturing site, waste water treatment, production of packaging material and waste processing of residual waste up to the landfill. Credits for electricity and steam from the incineration of production waste are not taken into account nor are any credits as a result of carbon offsetting.

A4 Transport:

Transport of the packed textile floor covering from manufacturing gate to the place of installation.

A5 Installation:

Installation of the textile floor covering, production and transport of auxiliary material, waste processing up to the landfill of residual waste, the production of the amount of carpet that occurs as installation waste incl. its transport to the place of installation.

Credits for electricity and steam from the incineration of installation waste leave the product system and are not declared in Module D.

B1 Use:

Product related VOC-emissions are not relevant.

B2 Maintenance:

Cleaning of the textile floor covering for a period of 1 year:

- Vacuum cleaning – electricity supply

- Wet cleaning – electricity, water consumption, production of the cleaning agent, waste water

treatment.

The declared values in this module have to be multiplied with the assumed service time of the floor covering in the building in question.

B3 - B7:

The modules are not relevant and therefore not declared.

C1 De-construction:

De-construction of the floor covering is made by handcraft and causes no additional impacts.

C2 Transport:

Carpet waste is returned to Desso and therefore the distance is equal to the impact in A4.

C3 Waste processing:

The yarn is separated from the backing. The carpet tile is processed at Desso. Desso specific data is used as input for this module.

C4 Disposal

Non-recycled waste is discarded by Desso for use in the cement industry. Potential benefits are allocated to module D.

D Recycling Potential:

The EcoBase[™] backing is 100% recyclable in Desso's own production process and therefore replaces primary EcoBase[™] in the carpet tile production. The yarn is extracted from the tile and sent for recycling to create new yarn. Polyester tuft cloth and latex compound are used as fuels in the cement production. D/1 is the recycling potential of EcoBase[™] carpet tile backing.

D/2 is the recycling potential of PA6.

D/3 are the benefits from substituting fuel in the cement production.

Comparability

Basically, a comparison or an evaluation of EPD data is only possible if all the data sets to be compared were created according to /EN 15804/ and the building context, respectively the product-specific characteristics of performance, are taken into account.

LCA: Scenarios and additional technical information

Transport to the construction site (A4)

Name	Value	Unit
Litres of fuel	29.4	l/100km
Transport distance	700	km
Capacity utilisation (including empty runs)	85	%
Gross density of products transported	700	kg/m³

Installation in the building (A5)

Name	Value	Unit				
Auxiliary	0.2	kg				
Material loss	0.13	kg				
Cardboard wasto (nackaging material) leaves the						

Cardboard waste (packaging material) leaves the system for recycling. Installation waste is considered to be incinerated in a municipal waste incineration plant.

Maintenance (B2)

Name	Value	Unit
Maintenance cycle (wet cleaning)	1.5	1/year
Cleaning agent (wet cleaning)	0.06	kg/year
Water consumption (wet cleaning)	0.03	m ³
Maintenance (dry cleaning)	208	1/year
Electricity consumption	0.314	kWh

Further information on cleaning and maintenance see www.desso.com

End of Life (C1-C4)

DESSO EcoBase® products are designed for disassembly and recycling. Next to that a Take Back programme has been put in place as well as a recycling facility called Refinity[®] Removal of used carpet tiles is done by hand and the reverse logistic process is organised by Desso.

In order to further secure the return of these valuable raw materials, Desso has also launched a Carpet Lease[™] programme together with global financial solutions provider DLL.

Name	Value	Unit
Collected separately	4.4	kg
Recycling	4.4	kg

Reuse, recovery and/or recycling potentials (D), relevant scenario information

Both the yarn and EcoBase[™] backing can be recycled. The backing can be used 100% in Desso's own production process. After additional processing, the yarn (PA6) can be used as yarn again. This means that both materials replace the need for primary materials in the next phase. Polyester and latex compound are used as fuels in the production of cement.

Name	Value	Unit
DESSO Ecobase® recovered of total tile	58.6	%
Polyamide 6 recovered of total tile	19.1	%
Calcium Carbonate (chalk)	9.5	%
Polyester, Latex, Energy recovery	12.8	%

Recycling in the cement industry: the organic material of the carpet is used as secondary fuel in a cement kiln. It substitutes mainly lignite (58%), hard coal (26%) and petrol coke (12%). The inorganic material is substantially integrated in the cement clinker and substitutes virgin material input.

LCA: Results

Modules B3 - B7 are not relevant during the service time of the carpet and are therefore not declared. Module C1 causes no additional impact (see "LCA: Calculation rules", "C1 De-construction") and is therefore not declared. The declared values in module B2 have to be multiplied with the assumed service time (in years) of the floor covering in the building considered.

DESC	RIPT	ION C	DF THE	SYS1	EM E	BOUND	ARY (X =	INCLUE	DED IN	LCA; I	MND :	= MOD	ULE N	OT DE	ECL/	ARED)
PROD	DUCT S	TAGE	CONST ON PRC	RUCTI CESS		USE STAGE END OF LIFE STAGE BENEFITS AND USE STAGE END OF LIFE STAGE BEYOND THE SYSTEM				END OF LIFE STAGE							
			51A	GE												BOL	INDARIES
Raw material supply	Transport	Manufacturing	Transport from the gate to the site	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse-	Recovery- Recycling- potential
A1	A2	A3	A4	A5	B1	B2	B 3	B4	4 B5	B6	B7	C1	C2	C3	C4		D
Х	Х	Х	X	Х	Х	X	MND	MN	ID MND	MND	MND	MND	X	X	Х		Х
RESU	ILTS	OF TH	IE LCA	- EN	VIRO	NMENT	AL IM	PAC	CT: 1m ²	ЕсоВа	se™ c	arpet	tiles -	800 to	900 c	/m²	PA6,
0% re	cycle	d															
Param eter	U	nit	A1-A3		4	A5	B1		B2	C2	C	3	C4	D/1	D	/2	D/3
GWP	[kg CC	D ₂ -Eq.]	1.27E+1	1 5.3	2E-1	3.33E-1	0.00E	+0	2.47E-1	5.32E-1	1.86	E-2 (0.00E+0	-2.13E+0) -5.73	3E+0	-8.34E-2
AP	[kg CFC	<u>∽-Fα</u> 1	3.23E-7 4.30E-2	9.7	3E-8 5F-3	2.89E-8 1.05E-3	0.00E	+0	5.60E-8 1.82E-3	9.73E-8	2.25	E-10 0	00E+0	-2.31E-8	-2.0	4E-9 3F-2	-2.81E-8
EP	[kg (PC)₄) ³ -Eq.]	1.16E-2	4.6	2E-4	7.68E-4	0.00E	+0	8.59E-5	4.62E-4	7.59	E-6 (.00E+0	-1.45E-3	-4.1	2E-3	-7.04E-5
POCP	[kg ethe	ene-Eq.]	2.19E-3	9.0	8E-5	3.26E-4	0.00E	+0	8.26E-5	9.08E-5	1.13	E-6 (.00E+0	-4.23E-4	-8.3	7E-4	-4.05E-5
ADPE	[kg S	b-Eq.]	7.97E-2	3.8	8E-3	1.43E-3	0.00E	+0	3.15E-4	3.88E-3	1.40	E-5 (.00E+0	-8.82E-3	-3.4	3E-2	-7.19E-3
			2.01E+2	2 8.4	9E+0	9.01E-1	0.00E	+0	5.37E+0	8.49E+0	4.43	E-3 (0.00E+0	-3.53E+	-1.7	4E-1	-9.77E+0
Caption	GVVH n Futn) = Glob onhicatir	al warming	g potent	ial; ODI > = Fori	P = Depleti mation pote	on poter	ntial o tronos	t the strato	spheric ozo	one layei hemical (r; AP = A oxidants	· ADPF =	on potentia Abiotic de	al of lanc	and N	water; EP =
Capito		opinioaat	potonia		fo	ossil resou	rces; AD	PF =	Abiotic dep	pletion pote	ential for	fossil re	sources	, 1010110 1	spieden	poton	
RESU	ILTS	OF TH	IE LCA	- RE	SOUF	RCE US	E: 1m	² Ec	:oBase¹	™ carpe	et tiles	- 800	to 900) g/m² l	PA6, (<mark>)% r</mark> e	ecycled
Parame	eter l	Jnit	A1-A3	A4	,	A5	B1		B2	C2	C3		C4	D/1	D	/2	D/3
PERE		MJ]	7.19E+0	1.01E		1.19E+0	0.00E+		3.40E-1	1.01E-1	3.00E	-1 0	00E+0	-2.97E-1	-3.46	5E-1	-1.90E-2
PERI		MI	7 19E+0	1.00E	-1	1 19E+0	0.00E+		3.42E-1	1.01E-1	3.00E	+0 0	00E+0	_2 97E_1	-3.46	E+U SE-1	1 90E+0
PENR		MJI	2.19E+2	8.63E	+0 3	3.81E+0	0.00E+		4.89E+0	8.63E+0	2.91E	-2 0	00E+0	-6.03E+1	-7.50)E+1	-1.28E+1
PENR	M [MJ]	0.00E+0	0.00E	+0 (0.00E+0	0.00E+	0 (0.00E+0	0.00E+0	0.00E	+0 0	00E+0	0.00E+0	0.00	E+0	0.00E+0
PENR	RT [MJ]	2.19E+2	8.63E	+0 3	3.81E+0	0.00E+	0 4	4.91E+0	8.63E+0	2.37E	-1 0	00E+0	-6.03E+1	-7.50)E+1	-1.28E+1
SM	_	[kg]	1.78E+0	0.00E	+0 (0.00E+0	0.00E+	0 (0.00E+0	0.00E+0	0.00E	+0 0	00E+0	-1.80E+0	0.00	E+0	0.00E+0
RSF NIDGI			0.00E+0	0.00E	+0 0	0.00E+0	0.00E+		0.00E+0	0.00E+0	0.00E	+0 0	00E+0	0.00E+0	0.00	E+0	0.00E+0
FW		iviJ [m³]	1.28F-2	4 75F	-4	2.31E-2	0.00E+		9.85E-3	4 75F-4	2.55E	-0 0	00E+0	1.90E-4	2.22	E+0 2F-3	-3.82E-5
		PERF =	Use of rei	newable	prima	rv enerav	excludi	na rer	newable p	rimary ene	erav res		ised as i	raw mater	ials: PF	RM =	Use of
Caption	Caption Cap																
RESU				- 00	TPU		S AN	DW	ASIE (JRIES						
1m² E	сова	ISE ''''	carpet	tiles -	800		g/m² ₽	A6,	<u>0% rec</u>	ycied							
Parame	eter l	Jnit	A1-A3	A4		A5	B1		B2	C2	C3		C4	D/1	D	/2	D/3
HWE		[kg]	6.16E-5	4.82E	-6	3.52E-3	0.00E+	0	1.75E-1	4.82E-6	1.60E	-2 0	00E+0	-7.33E-6	-7.13	3E-7	-1.15E-6
		[KG]	0.08E-1	3./8E	-1	3.83E-2 3.51E-3	0.00E+		9.43E-1 1.75E-1	3.78E-1 5.51⊑-5	3.35E	-3 0	00E+0	-1.16E-2	-5.0	1E-2 1E-7	-8.72E+0
CRU	, ,	ivgi [ka]	0.00E+0	0.00F	+0	2.37E-5	0.00E+	ŏ⊢	1.18E-3	0.00E+0	1.98F	-5 0	00E+0	0.00E+0	0.00	E+0	0.00E+0
MFR	2	[kg]	0.00E+0	0.00E	+0 (0.00E+0	0.00E+	0 0	0.00E+0	0.00E+0	0.00E	+0 0	00E+0	0.00E+0	0.00	E+0	0.00E+0
MER	2	[kg]	0.00E+0	0.00E	+0 (0.00E+0	0.00E+	0 (0.00E+0	0.00E+0	0.00E	+0 0	00E+0	0.00E+0	0.00	E+0	0.00E+0
EEE		MJ]	0.00E+0	0.00E	+0 (0.00E+0	0.00E+		0.00E+0	0.00E+0	0.00E	+0 0	00E+0	0.00E+0	0.00	E+0	0.00E+0
		MJ]	0.00E+0	0.00E	.+0 (U.00E+0	0.00E+	0 0	0.00E+0	0.00E+0	0.00E	+0 0	00E+0	0.00E+0	0.00	E+0	0.00E+0
Caption	aption Hazaroous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed; CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported electrical energy; EEE = Exported thermal energy																

Interpretation

In order to understand the full environmental impact of products declared in this EPD , one should consider Module D when comparing on building level.

This product is specifically designed for recycling, which is demonstrated in Module D.

THE ULTIMATE FLOORING EXPERIENCE

References

Institut Bauen und Umwelt

Institut Bauen und Umwelt e.V., Berlin(pub.): Generation of Environmental Product Declarations (EPDs);

www.ibu-epd.de

ISO 14025

DIN EN ISO 14025:2011-10: Environmental labels and declarations — Type III environmental declarations — Principles and procedures

EN 15804

EN 15804:2012-04+A1 2013: Sustainability of construction works — Environmental Product Declarations — Core rules for the product category of construction products

PCR 2011, Part B

Institut Bauen und Umwelt e.V., Königswinter (pub.): Product Category Rules for Construction Products from the range of Environmental Product Declarations of Institut Bauen und Umwelt (IBU), Part B: Beguirements on the EDD for floor equations

Part B: Requirements on the EPD for floor coverings, June 2011

www.bau-umwelt.de

EN 1307

DIN EN1007:Textile floorcoverings - Classification of pile carpets, 20008-8

EN 14041

DIN EN 14041: 2008-05: Resilient, textile and laminate floor coverings

ISO 10874

DIN EN ISO 10874: 2012-04: Resilient, textile and laminate floor coverings - Classification

EN 13501-1

DIN EN 13501-1: 2010-01: Fire classification of construction products and building elements - Part 1: Classification using data from reaction to fire tests.

Cradle to Cradle®

Cradle to Cradle CertifiedCM Product Standard Version 3.1 McDonough Braungart Design Chemistry (MBDC) 2016.

Institut Bauen und Umwelt e.V.	Publisher Institut Bauen und Umwelt e.V. Panoramastr. 1 10178 Berlin Germany	Tel Fax Mail Web	+49 (0)30 3087748- 0 +49 (0)30 3087748- 29 info@ibu-epd.com www.ibu-epd.com
Institut Bauen und Umwelt e.V.	Programme holder Institut Bauen und Umwelt e.V. Panoramastr 1 10178 Berlin Germany	Tel Fax Mail Web	+49 (0)30 - 3087748- 0 +49 (0)30 – 3087748 - 29 info@ibu-epd.com www.ibu-epd.com
Logo	Author of the Life Cycle Assessment Name Straße, Nr. PLZ, Ort Land	Tel Fax Mail Web	Nummer Nummer e-mail Web-Adresse
THE ULTIMATE FLOORING EXPERIENCE	Owner of the Declaration Desso BV Taxandriaweg 15 5142PA Waalwijk Netherlands	Tel Fax Mail Web	+31(0)416684100 +31(0)416335955 info@desso.com www.desso.com